Where’s the noise? Key features of neuronal variability and inference emerge from self-organized learning


, ,
Trial-to-trial variability and spontaneous activity of cortical recordings have been suggested to reflect intrinsic noise. This view is currently challenged by mounting evidence for structure in these phenomena: Trial-to-trial variability decreases following stimulus onset and can be predicted by previous spontaneous activity. This spontaneous activity is similar in magnitude and structure to evoked activity and can predict decisions. All of the observed neuronal properties described above can be accounted for, at an abstract computational level, by the sampling-hypothesis, according to which response variability reflects stimulus uncertainty. However, a mechanistic explanation at the level of neural circuit dynamics is still missing. In this study, we demonstrate that all of these phenomena can be accounted for by a noise-free self-organizing recurrent neural network model (SORN). It combines spike-timing dependent plasticity (STDP) and homeostatic mechanisms in a deterministic network of excitatory and inhibitory McCulloch-Pitts neurons. The network self-organizes to spatio-temporally varying input sequences. We find that the key properties of neural variability mentioned above develop in this model as the network learns to perform sampling-like inference. Importantly, the model shows high trial-to-trial variability although it is fully deterministic. This suggests that the trial-to-trial variability in neural recordings may not reflect intrinsic noise. Rather, it may reflect a deterministic approximation of sampling-like learning and inference. The simplicity of the model suggests that these correlates of the sampling theory are canonical properties of recurrent networks that learn with a combination of STDP and homeostatic plasticity mechanisms.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s